Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37028354

RESUMEN

Collecting emotional physiological signals is significant in building affective Human-Computer Interactions (HCI). However, how to evoke subjects' emotions efficiently in EEG-related emotional experiments is still a challenge. In this work, we developed a novel experimental paradigm that allows odors dynamically participate in different stages of video-evoked emotions, to investigate the efficiency of olfactory-enhanced videos in inducing subjects' emotions; According to the period that the odors participated in, the stimuli were divided into four patterns, i.e., the olfactory-enhanced video in early/later stimulus periods (OVEP/OVLP), and the traditional videos in early/later stimulus periods (TVEP/TVLP). The differential entropy (DE) feature and four classifiers were employed to test the efficiency of emotion recognition. The best average accuracies of the OVEP, OVLP, TVEP, and TVLP were 50.54%, 51.49%, 40.22%, and 57.55%, respectively. The experimental results indicated that the OVEP significantly outperformed the TVEP on classification performance, while there was no significant difference between the OVLP and TVLP. Besides, olfactory-enhanced videos achieved higher efficiency in evoking negative emotions than traditional videos. Moreover, we found that the neural patterns in response to emotions under different stimulus methods were stable, and for Fp1, FP2, and F7, there existed significant differences in whether adopt the odors.


Asunto(s)
Electroencefalografía , Emociones , Humanos , Electroencefalografía/métodos , Emociones/fisiología , Reconocimiento en Psicología , Entropía
2.
Front Neurosci ; 17: 1345770, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38287990

RESUMEN

Introduction: Affective computing is the core for Human-computer interface (HCI) to be more intelligent, where electroencephalogram (EEG) based emotion recognition is one of the primary research orientations. Besides, in the field of brain-computer interface, Riemannian manifold is a highly robust and effective method. However, the symmetric positive definiteness (SPD) of the features limits its application. Methods: In the present work, we introduced the Laplace matrix to transform the functional connection features, i.e., phase locking value (PLV), Pearson correlation coefficient (PCC), spectral coherent (COH), and mutual information (MI), to into semi-positive, and the max operator to ensure the transformed feature be positive. Then the SPD network is employed to extract the deep spatial information and a fully connected layer is employed to validate the effectiveness of the extracted features. Particularly, the decision layer fusion strategy is utilized to achieve more accurate and stable recognition results, and the differences of classification performance of different feature combinations are studied. What's more, the optimal threshold value applied to the functional connection feature is also studied. Results: The public emotional dataset, SEED, is adopted to test the proposed method with subject dependent cross-validation strategy. The result of average accuracies for the four features indicate that PCC outperform others three features. The proposed model achieve best accuracy of 91.05% for the fusion of PLV, PCC, and COH, followed by the fusion of all four features with the accuracy of 90.16%. Discussion: The experimental results demonstrate that the optimal thresholds for the four functional connection features always kept relatively stable within a fixed interval. In conclusion, the experimental results demonstrated the effectiveness of the proposed method.

3.
J Neurosci Methods ; 378: 109642, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35690333

RESUMEN

BACKGROUND: The EEG-based emotion recognition is one of the primary research orientations in the field of emotional intelligence and human-computer interaction (HCI). NEW METHOD: We proposed a novel model, denoted as ICRM-LSTM, for EEG-based emotion recognition by combining the independent component analysis (ICA), the Riemannian manifold (RM), and the long short-term memory network (LSTM). The SEED and MAHNOB-HCI dataset were employed to verify the performance of the proposed model. Firstly, ICA was used to perform blind source separation (BSS) for the preprocessed EEG signals provided by the two datasets. Then, a series of the covariance matrices according to time order were extracted from the blind source signals, and the symmetric positive definiteness of covariance matrix allowed us to project them from RM space to Euclid space by logarithmic mapping. Finally, the transformed covariance matrices were taken as inputs of the LSTM network to perform the emotion recognition. RESULTS: To validate the effect of the ICRM method on the performance of the proposed model, we designed three groups of comparative experiments. The average accuracy of the ICRM-LSTM model were 96.75 % and 98.09 % in SEED and MAHNOB-HCI, respectively. Then we compared our model with the models didn't perform the ICA or RM method, where we found that the proposed model had better performance. Furthermore, to verify the robustness, we added three groups of Gaussian noise with different signal-to-noise ratios (SNR) to the preprocessed EEG signals, and the proposed model achieved a good performance in both the two datasets. COMPARISON WITH EXISTING METHOD: The performance of our model was superior to most of existing methods which also employed the SEED or MAHNOB-HCI dataset. CONCLUSION: This paper demonstrated that the ICA and RM were helpful for EEG-based emotion recognition, and provided the evidence that the RM method could effectively alleviate the problem of the uncertain ordering of ICA.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Algoritmos , Electroencefalografía/métodos , Emociones , Humanos , Memoria a Largo Plazo
4.
Nat Commun ; 8(1): 387, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855518

RESUMEN

The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.


Asunto(s)
Biomasa , Conservación de los Recursos Naturales , Bosque Lluvioso , Atmósfera/química , Carbono , Cambio Climático , Hidrología , Modelos Biológicos , Modelos Estadísticos , Estaciones del Año , América del Sur , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...